处理高并发的六种方法

处理高并发的六种方法

1:系统拆分,将一个系统拆分为多个子系统,用dubbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,这样就可以抗高并发。

2:缓存,必须得用缓存。大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发啊。没问题的。所以你可以考的虑考虑你的项目里,那些承载主要请求读场景,怎么用缓存来抗高并发。

3:MQ(消息队列),必须得用MQ。可能你还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,疯了。那高并发绝对搞挂你的系统,人家是缓存你要是用redis来承载写那肯定不行,数据随时就被LRU(淘汰掉最不经常使用的)了,数据格式还无比简单,没有事务支持。所以该用mysql还得用mysql啊。那你咋办?用MQ吧,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以你得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是ok的。

4:分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。

5:读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。

6:solrCloud:
SolrCloud(solr 云)是Solr提供的分布式搜索方案,可以解决海量数据的 分布式全文检索,因为搭建了集群,因此具备高可用的特性,同时对数据进行主从备份,避免了单点故障问题。可以做到数据的快速恢复。并且可以动态的添加新的节点,再对数据进行平衡,可以做到负载均衡:


作者:ALLENsakaru
来源:CSDN
原文:https://blog.csdn.net/ALLENsakaru/article/details/85952942
版权声明:本文为博主原创文章,转载请附上博文链接!


本期内容就到这里啦~以上内容均可在 方包博客http://fang1688.cn 网站直接搜索名称访问哦。欢迎感兴趣的小伙伴试试,如果本文对您有帮助,也请帮忙点个 赞 + 在看 啦!❤️

欢迎大家加入方包的优派编程学习圈子,和多名小伙伴们一起交流学习,向方包 1 对 1 提问、跟着方包做项目、领取大量编程资源等。Q群891029429欢迎想一起学习进步的小伙伴~

另外方包最近开发了一款工具类的小程序「方包工具箱」,功能包括:抖音、小红书、快手去水印,天气预报,小说在线免费阅读(内含上万部热门小说),历史今天,生成图片二维码,图片识别文字,ai伪原创文章,数字摇号抽奖,文字转语音MP3功能...

送福利!关注下方的公众号:优派编程回复资料,即可获得软件app下载资源和python、java等编程学习资料!

   
点击卡片关注「优派编程」
定期分享 it编程干货

 ⬇️ 点击链接阅读原文直达 方包博客

分享到:
赞(0)

评论抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

免责声明:本站为非盈利性个人博客,博客所发布的一切源码、软件的文章仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。

本站信息来自网络,版权争议与本站无关,您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容。访问和下载本站内容,说明您已同意上述条款。本站不贩卖软件,所有内容不作为商业行为。

如果有侵犯版权请发送邮箱至619018020@qq.com,我们会在24小时之内处理。

Copyright © 2019-2021知识学堂